Effects of melatonin implantation on spermatogenesis, the moulting cycle and plasma concentrations of melatonin, LH, prolactin and testosterone in the male blue fox (Alopex lagopus)
AJ Smith, M Mondain-Monval, K Andersen Berg, P Simon, M Forsberg, OP Clausen, T Hansen, OM Moller, and R Scholler
Melatonin administration to male blue foxes from August for 1 year resulted in profound changes in the testicular and furring cycles. The control animals underwent 5-fold seasonal changes in testicular volume, with maximal values in March and lowest volumes in August. In contrast, melatonin treatment allowed normal redevelopment of the testes and growth of the winter coat during the autumn but prevented testicular regression and the moult to a summer coat the following spring. At castration in August, 88% of the tubular sections in the testes of the controls contained spermatogonia as the only germinal cell type, whereas in the treated animals 56-79% of sections contained spermatids or even spermatozoa. Semen collection from a treated male in early August produced spermatozoa with normal density and motility. Measurement of plasma prolactin concentrations revealed that the spring rise in plasma prolactin values (from basal levels of 1.6-5.4 ng/ml to peak values of 4.1-18.3 ng/ml) was prevented; values in the treated animals ranged during the year from 1.8 to 6.3 ng/ml. Individual variations in plasma LH concentrations masked any seasonal variations in LH release in response to LHRH stimulation, but the testosterone response to LH release after LHRH stimulation was significantly higher after the mating season in the treated animals, indicating that testicular testosterone production was maintained longer than in the controls. The treated animals retained a winter coat, of varied quality and maturity, until the end of the study in August.
AJ Smith, M Mondain-Monval, K Andersen Berg, P Simon, M Forsberg, OP Clausen, T Hansen, OM Moller, and R Scholler
Melatonin administration to male blue foxes from August for 1 year resulted in profound changes in the testicular and furring cycles. The control animals underwent 5-fold seasonal changes in testicular volume, with maximal values in March and lowest volumes in August. In contrast, melatonin treatment allowed normal redevelopment of the testes and growth of the winter coat during the autumn but prevented testicular regression and the moult to a summer coat the following spring. At castration in August, 88% of the tubular sections in the testes of the controls contained spermatogonia as the only germinal cell type, whereas in the treated animals 56-79% of sections contained spermatids or even spermatozoa. Semen collection from a treated male in early August produced spermatozoa with normal density and motility. Measurement of plasma prolactin concentrations revealed that the spring rise in plasma prolactin values (from basal levels of 1.6-5.4 ng/ml to peak values of 4.1-18.3 ng/ml) was prevented; values in the treated animals ranged during the year from 1.8 to 6.3 ng/ml. Individual variations in plasma LH concentrations masked any seasonal variations in LH release in response to LHRH stimulation, but the testosterone response to LH release after LHRH stimulation was significantly higher after the mating season in the treated animals, indicating that testicular testosterone production was maintained longer than in the controls. The treated animals retained a winter coat, of varied quality and maturity, until the end of the study in August.
Commenta