Unpublished data presented at the 2000 Canadian Society for Exercise Physiology Meeting shed light on the importance of BCAAs in recovery (2). In endurance athletes, post workout protein synthesis rates will drop by about 30% for up to 6 hours after a training bout. Providing carbohydrates to these athletes, while favorable for increasing muscle glycogen stores, has no ability to increase protein synthesis. However, a drink providing only the BCAA leucine was able to promote full recovery of post-workout protein synthesis levels to pre-training values. In addition, by adding carbohydrate to the beverage, protein synthesis was higher after the workout than before the workout. Since this beverage increased blood insulin levels, the author of the study concluded that insulin indeed had a synergistic effect with leucine on protein synthesis. The results of this study and others have lead researchers to believe that within the muscle cell, there's one particular regulatory pathway for protein synthesis that's stimulated by insulin, but dependent on leucine (27). If insulin is present and leucine isn't, then protein synthesis can't maximally be stimulated. If leucine is present and insulin isn't, protein synthesis can't be maximally stimulated. But give 'em both and look out!Since leucine has this great impact on muscle protein synthesis and since levels of leucine, much like glutamine, decline during exercise, it only makes sense to supplement with leucine after workouts (28). In the end, it appears that leucine, along with protein and carbs, will lead to the greatest increases in protein synthesis. But remember, insulin isn't enough. Providing BCAAs in an ideal ratio is the second part in rapidly stimulating protein synthesis. The Grand FinaleThat's it. The ideal post workout combo that maximizes your growth and recovery potential. Whew, that's a lot of science! I hope I didn't lose you along the way because I honestly believe that this article is the most important I've ever written for T-mag.Compiling years of good post-workout science has enabled me to devise a plan of attack for optimal post-workout nutrition. And this plan of attack is designed with only one goal in mind… optimizing recovery for every human being that works out, regardless of the type of exercise they do. Remember, to be effective, post-workout nutrition has to…
• Increase glycogen stores
• Increase protein synthesis
• Decrease protein breakdown
Interestingly, several nutrients such as glucose and glucose polymers, protein hydrolysates, and amino acids can all work together with overlapping functions in order to accomplish all three goals. No drugs necessary!At this point, before the jaded cynics write in shouting about how this article is probably nothing more than a thinly veiled attempt at introducing a new Biotest supplement, I'm gonna' head them off at the pass. This isn't a thinly veiled attempt at introducing a new supplement. It is a full fledged, in your face, introduction to a new Biotest supplement . This supplement uses every glorious piece of available nutritional science to support its claims. Because about 95% of the idea behind the formula is founded on nothing but hard data, very little of this article is theoretical. If you don't believe me, go look up the references yourself. If that's not enough, the very formula that Biotest plans to launch is currently being evaluated in my lab. Unlike other companies, Biotest will actually have supporting data before the product is launched. Rest assured, T-mag readers will be the first to read about the results (which will be posted on this very site within the next few weeks).The better part of the last year has been spent putting together the ideal post-workout protein formula that can maximally stimulate glycogen and protein synthesis while decreasing protein breakdown in all types of athletes. Since the formula is based only on nutrients that occur naturally in food, it has no banned or potentially harmful substances. It's therefore useful for all athletes from triathletes to power lifters and from those in high school to those competing in the professional ranks. Each and every trainee who wants a better physique and each and every athlete who wants to improve their training and their performances has something to gain by taking it.
It's been a week since I laid out the main repercussions of training and how they manifest themselves during the post-workout period. So now that you've had a chance to think about that, I'm ready to drop the recovery plan. Are you excited? I hope so. I also hope the build-up's been pretty dramatic. You have to realize, I've had to wait years for this information. With the publication of each new study, I could see that we were getting closer to understanding the post-workout puzzle. But, as Tom Petty once said, "the waiting is the hardest part". Finally, this year, with the culmination of a number of research projects, it's pretty clear what type of nutrition we need for optimal post-workout recovery. Maximize Post-Workout Gycogen SynthesisThere are two key factors to rapidly increasing post-workout glycogen synthesis (8):1. Adequate carbohydrate availability (to convert to muscle glycogen) (9)2. High insulin levels (to stimulate glycogen storage and shuttle carbs into the muscle) (9)Endurance athletes have traditionally been encouraged to consume 1.2 g of carbohydrate per kg of body weight immediately after training/competition (8,10). In addition, they are encouraged to continue this supplementation every 2 hours up until 6 hours after their exercise bout. Recent evidence, however, indicates that the addition of protein to a carb drink can actually increase insulin levels higher than carbs alone (11,12). There seems to be a synergistic insulin release with protein plus carbs.The current recommendations for endurance athletes have therefore changed to include protein. Eating every 2 hours is still recommended, but now endurance athletes are encouraged to consume 0.8 g of carbs per kg of bodyweight in combination with 0.4 g of protein / kg of bodyweight. This means that a 154 lb endurance athlete should be consuming 56 g of carbs and 28 g of protein at each meal: right after training, and 2, 4, and 6 hours after training. Since most of the research on this topic has been done in endurance athletes, we have to speculate about what strength athletes would need in this regard. From the research, it's clear that strength athletes actually have higher glycogen synthesis rates after exercise than endurance athletes so they can more rapidly refill their glycogen stores (13). But since strength athletes don't deplete their glycogen stores as badly as endurance athletes, they would need fewer total calories. With this said, I believe it's reasonable to suggest that a strength athlete consume one meal of 0.8g of carbohydrate and 0.4 g of protein / kg of body weight immediately after training. This means that the 154 lb weight lifter would need 56 g of carbs and 28 g of protein while the 220 lb weight lifter would need about 80 g of carbs and 40 g of protein after a weight-training workout. Since glycogen synthesis rates are so high in strength athletes, they would only need to consume this type of meal immediately after the workout and then resume normal eating about 2-3 hours later. If the strength athlete is in a bulking cycle, the post-workout recommendations would include 2 servings of recommended formula, one immediately after training and one 30-60 minutes later. Normal eating could be resumed 2-3 hours later.A couple of final factors need to be discussed. First, the research is very clear that if you wait to consume your post-workout nutrition, you lose (14). One study showed that if the post-workout beverage was consumed immediately after training, glycogen synthesis was three times higher than if the beverage was consumed just two hours later. So the sooner you drink the drink, the better the recovery rate. Secondly, with respect to the types of carbohydrate and protein to consume, it's clear that immediately after training, liquid nutrition is best tolerated (8,15). Since liquid nutrition is more rapidly digested and absorbed, nutrients are more rapidly delivered to the muscle. In addition, according to the literature, the optimal carbohydrates to consume are glucose and glucose polymers, like maltodextrin (8). As far as the best protein to consume, you want to choose a protein that is absorbed as rapidly as the ingested carbs so that the synergistic insulin response can be maximized. Now that's hard to find. Most intact proteins (yes, even in powdered form) take several hours to be fully absorbed. We need protein that can get absorbed within minutes, just like the carbs do. Without this simultaneous absorption of both, the insulin response will be disappointing.
• Increase glycogen stores
• Increase protein synthesis
• Decrease protein breakdown
Interestingly, several nutrients such as glucose and glucose polymers, protein hydrolysates, and amino acids can all work together with overlapping functions in order to accomplish all three goals. No drugs necessary!At this point, before the jaded cynics write in shouting about how this article is probably nothing more than a thinly veiled attempt at introducing a new Biotest supplement, I'm gonna' head them off at the pass. This isn't a thinly veiled attempt at introducing a new supplement. It is a full fledged, in your face, introduction to a new Biotest supplement . This supplement uses every glorious piece of available nutritional science to support its claims. Because about 95% of the idea behind the formula is founded on nothing but hard data, very little of this article is theoretical. If you don't believe me, go look up the references yourself. If that's not enough, the very formula that Biotest plans to launch is currently being evaluated in my lab. Unlike other companies, Biotest will actually have supporting data before the product is launched. Rest assured, T-mag readers will be the first to read about the results (which will be posted on this very site within the next few weeks).The better part of the last year has been spent putting together the ideal post-workout protein formula that can maximally stimulate glycogen and protein synthesis while decreasing protein breakdown in all types of athletes. Since the formula is based only on nutrients that occur naturally in food, it has no banned or potentially harmful substances. It's therefore useful for all athletes from triathletes to power lifters and from those in high school to those competing in the professional ranks. Each and every trainee who wants a better physique and each and every athlete who wants to improve their training and their performances has something to gain by taking it.
It's been a week since I laid out the main repercussions of training and how they manifest themselves during the post-workout period. So now that you've had a chance to think about that, I'm ready to drop the recovery plan. Are you excited? I hope so. I also hope the build-up's been pretty dramatic. You have to realize, I've had to wait years for this information. With the publication of each new study, I could see that we were getting closer to understanding the post-workout puzzle. But, as Tom Petty once said, "the waiting is the hardest part". Finally, this year, with the culmination of a number of research projects, it's pretty clear what type of nutrition we need for optimal post-workout recovery. Maximize Post-Workout Gycogen SynthesisThere are two key factors to rapidly increasing post-workout glycogen synthesis (8):1. Adequate carbohydrate availability (to convert to muscle glycogen) (9)2. High insulin levels (to stimulate glycogen storage and shuttle carbs into the muscle) (9)Endurance athletes have traditionally been encouraged to consume 1.2 g of carbohydrate per kg of body weight immediately after training/competition (8,10). In addition, they are encouraged to continue this supplementation every 2 hours up until 6 hours after their exercise bout. Recent evidence, however, indicates that the addition of protein to a carb drink can actually increase insulin levels higher than carbs alone (11,12). There seems to be a synergistic insulin release with protein plus carbs.The current recommendations for endurance athletes have therefore changed to include protein. Eating every 2 hours is still recommended, but now endurance athletes are encouraged to consume 0.8 g of carbs per kg of bodyweight in combination with 0.4 g of protein / kg of bodyweight. This means that a 154 lb endurance athlete should be consuming 56 g of carbs and 28 g of protein at each meal: right after training, and 2, 4, and 6 hours after training. Since most of the research on this topic has been done in endurance athletes, we have to speculate about what strength athletes would need in this regard. From the research, it's clear that strength athletes actually have higher glycogen synthesis rates after exercise than endurance athletes so they can more rapidly refill their glycogen stores (13). But since strength athletes don't deplete their glycogen stores as badly as endurance athletes, they would need fewer total calories. With this said, I believe it's reasonable to suggest that a strength athlete consume one meal of 0.8g of carbohydrate and 0.4 g of protein / kg of body weight immediately after training. This means that the 154 lb weight lifter would need 56 g of carbs and 28 g of protein while the 220 lb weight lifter would need about 80 g of carbs and 40 g of protein after a weight-training workout. Since glycogen synthesis rates are so high in strength athletes, they would only need to consume this type of meal immediately after the workout and then resume normal eating about 2-3 hours later. If the strength athlete is in a bulking cycle, the post-workout recommendations would include 2 servings of recommended formula, one immediately after training and one 30-60 minutes later. Normal eating could be resumed 2-3 hours later.A couple of final factors need to be discussed. First, the research is very clear that if you wait to consume your post-workout nutrition, you lose (14). One study showed that if the post-workout beverage was consumed immediately after training, glycogen synthesis was three times higher than if the beverage was consumed just two hours later. So the sooner you drink the drink, the better the recovery rate. Secondly, with respect to the types of carbohydrate and protein to consume, it's clear that immediately after training, liquid nutrition is best tolerated (8,15). Since liquid nutrition is more rapidly digested and absorbed, nutrients are more rapidly delivered to the muscle. In addition, according to the literature, the optimal carbohydrates to consume are glucose and glucose polymers, like maltodextrin (8). As far as the best protein to consume, you want to choose a protein that is absorbed as rapidly as the ingested carbs so that the synergistic insulin response can be maximized. Now that's hard to find. Most intact proteins (yes, even in powdered form) take several hours to be fully absorbed. We need protein that can get absorbed within minutes, just like the carbs do. Without this simultaneous absorption of both, the insulin response will be disappointing.
Commenta