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Context: Increasing dietary protein relative to carbohydrate and fat
enhances weight loss, at least in part by increasing satiety. The
mechanism for this is unclear.

Objective: The objective of this study was to compare the effects of
isocaloric test meals with differing protein to fat ratios on fasting and
postprandial ghrelin, insulin, glucose, appetite, and energy expendi-
ture before and after weight loss on the respective dietary patterns.

Design: The study design was a randomized parallel design of 12 wk
of weight loss (6 MJ/d) and 4 wk of weight maintenance (7.3 MJ/d)
with meals administered at wk 0 and 16.

Setting: The study was performed at an out-patient research clinic.

Patients and Other Participants: Fifty-seven overweight (body
mass index, 33.8 � 3.5 kg/m2) hyperinsulinemic men (n � 25) and
women (n � 32) were studied.

Interventions: High-protein/low-fat (34% protein/29% fat) or stan-
dard protein/high-fat (18% protein/45% fat) diets/meals were given.

Main Outcome Measures: The main outcome measures were
weight loss and fasting and postprandial ghrelin, insulin, glucose,
appetite, and energy expenditure before and after weight loss.

Results: Weight loss (9.2 � 0.7 kg) and improvements in fasting and
postprandial insulin and glucose occurred independently of diet com-
position. At wk 0 and 16, subjects wanted less to eat after the high-
protein/low-fat than the standard protein/high-fat meal (P � 0.02).
Fasting ghrelin increased (157.5 � 3.4 pg/ml or 46.6 � 1.0 pmol/liter;
P � 0.001), and the postprandial ghrelin response improved with
weight loss (P � 0.043) independently of diet composition. Postpran-
dial hunger decreased with weight loss (P � 0.018) and was predicted
by changes in fasting and postprandial ghrelin (r2 � 0.246; P � 0.004).
Lean mass was the best predictor of fasting (r2 � 0.182; P � 0.003)
and postprandial ghrelin (r2 � 0.096; P � 0.039) levels.

Conclusions: Exchanging protein for fat produced similar weight
loss and improvements in metabolic parameters and ghrelin ho-
meostasis. The reduced appetite observed with increased dietary pro-
tein appears not to be mediated by ghrelin homeostasis. (J Clin
Endocrinol Metab 90: 5205–5211, 2005)

FOR OVERWEIGHT AND obese men and women, par-
ticularly those with visceral obesity, weight loss de-

creases the risks of cardiovascular disease and type II dia-
betes mellitus. The conventional approach for achieving and
maintaining weight loss is a high-carbohydrate, low-fat diet
(1). However, long-term compliance with this dietary pattern
is poor (2), and a potential worsening of the metabolic profile
may occur (3). Alternative macronutrient profiles may have
more favorable effects on the metabolic profile and may also
optimize weight loss in an ad libitum setting. Approaches
now being examined include lower carbohydrate dietary
patterns, higher in either protein or monounsaturated fat. In
both isocaloric energy-restricted and ad libitum feeding en-
vironments, these approaches can reduce weight (4–6), waist
circumference (6), and total (4–6) and abdominal fat mass (7)
and maintain lean mass (3). Increased dietary protein may

facilitate weight loss through its greater satiating (8) and
thermic effects (9, 10). Accordingly, replacing a moderate
amount of fat and carbohydrate for protein may be a rea-
sonable dietary option to optimize weight loss and may
maximize metabolic improvements and enhance the main-
tenance of weight loss.

The differential satiating effects of altering macronutrient
composition may be mediated by gastrointestinal hormones,
including the orexigenic stomach-derived peptide, ghrelin.
Ghrelin stimulates GH secretion through its action as an
endogenous ligand for the hypothalamic-pituitary GH secre-
tagogue receptor. In addition, ghrelin is implicated in long-
term energy homeostasis and acute meal initiation. Ghrelin
levels increase preprandially, decrease postprandially (11),
and stimulate hunger and food intake (12) through action on
the hypothalamic arcuate nucleus. Total and active fasting
ghrelin levels are decreased in human obesity (13), which
may represent a compensatory response to a sustained pos-
itive energy balance (11). For obese individuals, it is pro-
posed that postprandial ghrelin suppression may be partially
or fully impaired (14–16). Suppression of postprandial hun-
ger may therefore be diminished, which could lead to earlier
reinitiation of feeding signals and, consequently, resistance
to weight loss (15). This is consistent with delayed satiation
documented in overweight individuals (17). The role, if any,
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of macronutrient composition in the regulation of ghrelin
remains unclear. Increasing dietary carbohydrate acutely
(18) or chronically in weight-maintaining diets (19) may sup-
press postprandial ghrelin more than increasing dietary fat,
although data are conflicting (15). Ghrelin may also induce
a positive energy balance by reducing energy expenditure
(20). The relationship among ghrelin, satiety, and energy
expenditure and its potential implications for the thermic
and satiating effects of dietary protein are thus unclear.

The objective of this study was to compare the short-term
effects of two isocaloric, energy-restricted, carbohydrate-
matched diets and test meals containing either increased
protein, low-fat (HP) or standard protein, high-fat diet (SP;
monounsaturated fat-enriched) on weight loss and fasting
and postprandial ghrelin levels. In addition, the relationship
between ghrelin homeostasis and changes in body weight
and composition, appetite, energy expenditure, and fasting
and postprandial metabolic variables were examined.

Subjects and Methods
Subjects

Overweight hyperinsulinemic men and women (n � 73), aged 20–65
yr, with fasting serum insulin levels greater than 15 mU/liter and a body
mass index (BMI) of 27–40 kg/m2 were recruited by public advertise-
ment. Subjects were excluded if diabetes mellitus, microalbuminuria, or
a history of liver, unstable cardiovascular, respiratory, gastrointestinal
disease, malignancy, pregnancy. or lactation was present. Premeno-
pausal women or claustrophobic subjects were excluded from partici-
pating in the measurement of energy expenditure. All experimental
procedures were approved by the human ethics committees of the Com-
monwealth Scientific Industrial Research Organization and the Royal
Adelaide Hospital, and all subjects provided written informed consent.

Dietary protocol

The prescribed diets were: 1) high-protein, low-fat diet [HP-LF; 40%
energy as protein (136 g/d), 30% fat (46 g/d; �10% saturated fat), 30%
carbohydrate, and 21 g fiber]; and 2) standard protein, high-fat diet
[SP-HF; 20% energy as protein (67 g/d), 50% fat (76 g/d; �10% saturated
fat), 30% carbohydrate, and 27 g fiber]. Most subjects were sedentary at
baseline and were asked to continue their usual physical activity levels
and to refrain from drinking more than two standard glasses of alcohol
per week throughout the study. Subjects followed fixed meal plans and
were supplied with key foods making up 60% of their energy intake (21).
Subjects met fortnightly with a dietitian for education on quantification
and recording of their daily food intake on daily checklists and to modify
the dietary regimen based on compliance and weight loss. Nutritional
intake was assessed from fortnightly 3-d consecutive food records (one
weekend day and two weekdays) with the use of Diet 1/Nutrient Cal-
culation software (Xyris Software, Highgate Hill, Australia). Dietary
compliance was determined by subject adherence to the macronutrient
profiles and assessment of serum creatinine and 24-h urinary urea to
creatinine ratio at wk 0 and 16 (21).

Experimental protocol

The study was conducted over 16 wk on an out-patient basis. Subjects
were matched for fasting serum insulin, BMI, age, and gender. The two
groups were then randomly assigned to either the HP-LF or SP-HF diet.
Both dietary groups underwent 12 wk of energy restriction (6081 kJ/d),
followed by 4 wk (7346 kJ/d) at energy balance on the same macronu-
trient composition.

Each month, subjects attended the out-patient clinic on 2 consecutive
days. At wk 0, 12, and 16 subjects, after having fasted overnight, were
weighed in light clothes with no shoes (Mettler scales, model AMZ14;
A&D Mercury, Kinomoto, Japan). At wk 0 and 16, total fat mass, total
lean mass, and abdominal fat mass were assessed by whole-body, dual-
energy x-ray absorptiometry (densitometer XR36; Norland Medical Sys-

tems, Fort Atkinson, WI; coefficient of variation, 2.3 � 0.7% for total body
fat mass and 2.1 � 0.4% for lean mass).

At wk 0 and 16, total energy expenditure was measured for 30 of the
subjects (18 men and two women). In all subjects, a 3-h meal tolerance
test (MTT) was performed with a test meal representative of the allo-
cated diet; HP-LF (2636 kJ; 37% of energy as protein, 30% fat, and 32%
carbohydrate) or SP-HF (2586 kJ; 18% of energy as protein, 49% fat, and
32% carbohydrate).

Appetite sensations and venous insulin, glucose, and ghrelin con-
centrations were measured before consuming the meal and 30, 60, 120,
and 180 min after the test meal. Fasting resting energy expenditure (REE)
and respiratory quotient (RQ) were measured by indirect calorimetry
(Deltatract metabolic monitor, Datex Division Instrumentarium Corp.,
Helsinki, Finland) (21). After consumption of the test meal, RQ and REE
values were recorded every 20 min for 180 min, adjusted from fasting
values, and averaged to determine postprandial RQ and thermic effect
of feeding (TEF) (21).

Subjective hunger, fullness, satiety, and desire to eat were assessed
using a validated 100-mm linear visual analog scale (VAS) as previously
described (21). Subjects were asked to make a single vertical mark on
each scale between the extremes (e.g. hungry to not hungry) to indicate
their feelings at that time. The change in ratings from baseline was
quantified. Subjects did not discuss their ratings with each other and
could not refer to their previous ratings when marking the VAS. Total
(glucose and insulin), incremental (ghrelin), and net (visual analog
scores) areas under the curve (AUC) during the 3-h MTT were calculated
geometrically using the trapezoidal rule (22).

Serum insulin, plasma glucose, and urinary urea and creatinine were
measured as previously described (21). Plasma ghrelin (total) was mea-
sured using a commercially available RIA (CV, �4.5%; Phoenix Phar-
maceuticals, Inc., Belmont, CA). The homeostasis model assessment
(HOMA) was used as a surrogate measure of insulin sensitivity [fasting
insulin (mU/liter) � fasting glucose (mmol/liter)/22.5] (23).

Statistical analyses

The characteristics of the subjects are presented as the mean � sem,
except where indicated. Results are presented for 57 subjects, except
fasting glucose, insulin, HOMA, and dual-energy x-ray absorptiometry
(n � 56); AUC glucose and insulin (n � 54); fasting ghrelin (n � 47); AUC
ghrelin (n � 45); and VAS (n � 50) due to incomplete data. Two-tailed
statistical analysis was performed using SPSS for Windows 10.0 software
(SPSS, Inc., Chicago, IL) with statistical significance set at an � level of
P � 0.05. Baseline measurements were assessed using two-factor
ANOVA, with diet and gender as fixed factors. Comparisons between
time points were assessed using repeated measures ANOVA, with diet
and gender as between-subject factors. In specific analyses, baseline
weight and glucose were included as covariates. Week 0 and 16 response
curves after the test meals were compared using a four-way, repeated
measures ANOVA, with week and blood sampling time as within-
subject factors and diet and gender as between-subject factors. Where an
interaction was observed, post hoc pairwise comparisons were per-
formed. Relationships between variables were examined using bivariate
and partial correlations, analysis of covariance, and multiple linear
regression.

Results
Subjects

Fifty-seven (25 men and 32 women; mean age, 50.3 � 9.9
yr; mean BMI, 34.0 � 3.5 kg/m2; mean weight, 97.2 � 14.0
kg; mean � sd) completed the intervention. Sixteen subjects
dropped out of the study (work commitments, n � 2; health
reasons, n � 3; personal reasons, n � 6; lost to follow-up, n �
5), five subjects before study commencement, and 11 subjects
during the study. There were no differences in the charac-
teristics of subjects in each diet group at baseline (Table 1).

Baseline weight (111.6 � 3.8 vs. 90.0 � 2.4 kg; P � 0.001)
and fasting glucose (107.1 � 7.1 vs. 94.6 � 1.8 mg/dl or 6.0 �
0.4 vs. 5.3 � 0.1 mmol/liter; P � 0.048) were higher for males
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than females. Both diets were well tolerated, with no adverse
events reported, and all subjects complied with the dietary
intervention based on the urinary urea/creatinine ratio and
reported individual macronutrient profiles (21). The percent-
age of energy derived from the macronutrients of both diets
remained the same during energy balance as during the
energy-restricted phase, but the energy content of each diet
increased to achieve energy balance (P � 0.001). Total energy
intake was not different between diet during energy restric-
tion or energy balance (21).

Body weight, body composition, and fasting and
postprandial insulin and glucose

As previously reported (21), a mean weight loss of 9.2 �
0.7 kg or 9.5% (P � 0.001) occurred independently of diet, and
weight was maintained effectively over the 4-wk energy
balance stage (P � 0.07). From wk 0–16, reductions in fat
mass (13.9 � 1.5%; P � 0.001), abdominal fat mass (17.1 �
2.0%; P � 0.001), lean mass (6.0 � 0.6%; P � 0.001), fasting
glucose (3.5 � 1.5%; P � 0.024), fasting insulin (13.8 � 9.3%;
P � 0.001), and fasting HOMA (13.3 � 11.7%; P � 0.001)
occurred with no diet or diet by gender interactions (Table
2 and Fig. 1, A and B). There was a time by gender interaction,
such that the men lost more weight and abdominal fat than
the women [respectively, 10.9 � 1.2 vs. 7.9 � 0.8 kg (P �
0.028) and 2.1 � 0.3 vs. 1.3 � 0.3 kg (P � 0.039); Table 2]. At
wk 16 compared with wk 0, there were reductions in the
postprandial glucose (4.1 � 1.6%; P � 0.01) and insulin
(12.3 � 6.9%; P � 0.001) concentrations, with no effect of diet
or any diet by gender interaction (Fig. 1, A and B).

Fasting and postprandial ghrelin

At baseline, there were no differences in fasting plasma
ghrelin concentrations between the diet groups. Fasting
ghrelin concentrations increased from 402.5 � 40.0 to 557.9 �
35.5 pg/ml (119.1 � 11.7 to 165.2 � 10.5 pmol/liter) from wk
0 to 16 (P � 0.001), with no effect of diet or gender. Ghrelin
concentrations decreased during the MTT at both wk 0 and

16. There was a change in the postprandial ghrelin profile
from wk 0–16 (P � 0.043), such that the maximal postpran-
dial decrease in ghrelin occurred at 120 min at wk 0 and at
60 min during wk 16 (P � 0.05). The decrease in ghrelin over
the first 60 min of the postprandial period was significantly
greater at wk 16 than at wk 0 (�77.2 � 19.8 vs. �13.6 � 19.2
pg/ml or �22.9 � 5.9 vs. �4.0 � 5.7 pmol/liter, respectively;
P � 0.017). There was also a trend for the postprandial nadir
to be increased from wk 0 to 16 (from �70.5 � 10.0 to
�109.5 � 20.7 pg/ml or �20.9 � 3.0 to �32.4 � 6.1 pmol/
liter; P � 0.06). There was a trend for the postprandial ghrelin
AUC to be improved from wk 0 to 16, such that a 5196.3 �
2993.5 pg/ml (1538.2 � 886.1 pmol/liter) greater reduction
in AUC ghrelin concentrations occurred (P � 0.087; Table 2
and Fig. 1C). There were no overall diet or diet by gender

TABLE 2. Body weight and composition, fasting HOMA, and
postprandial glucose, insulin, ghrelin at wk 0 and 16 for subjects
in the SP-HF and HP-LF groups

SP-HF diet
(n � 30)

HP-LF diet
(n � 27)

Weight (kg)a,b,c

Week
0 99.4 � 2.9 94.9 � 2.2
12 90.3 � 2.9 86.3 � 2.3
16 90.0 � 3.0 85.9 � 2.3

Total fat mass (kg)a,b

Week
0 40.0 � 1.7 37.2 � 1.7
16 34.8 � 1.9 32.3 � 1.9

Abdominal fat (kg)b,c,d

Week
0 10.8 � 0.4 9.5 � 0.4
16 9.0 � 0.5 7.9 � 0.5

Total lean mass (kg)a,b

Week
0 55.7 � 2.5 53.6 � 2.4
16 52.2 � 2.5 50.6 � 2.2

HOMAa

Week
0 3.1 � 0.4 3.2 � 0.3
16 2.5 � 0.3 2.1 � 0.2

AUC glucose (mg/dl�180 min)a,b,c

Week
0 19,830.1 � 1,108.6 18,783.6 � 356.2
16 18,369.2 � 496.7 18,057.7 � 379.0

AUC insulin (mU/liter�180 min)b

Week
0 6,825.9 � 637.7 7,842.6 � 758.2
16 5,285.2 � 502.8 5,950.7 � 474.0

AUC ghrelin (pg/ml�180 min)
Week

0 8,420.7 � 1,958.4 5,497.9 � 1,606.8
16 16,962.2 � 5,243.5 6,871.1 � 1,823.0

Data are expressed as mean � SEM. Data at wk 0 were assessed
using two-way ANOVA with diet and gender as fixed factors. Data
from wk 0 and 16 were assessed using repeated-measures ANOVA
with time as within-subject factor and diet and gender as between-
subject factors. For conversion from mg/dl to mmol/liter for glucose,
multiply by 0.056. For conversion from mU/liter to pmol/liter for
insulin, multiply by 6.95. For conversion from pg/ml to pmol/liter for
ghrelin, multiply by 0.296. For HOMA/DEXA: SP-HF � 29, HP-LF
n � 27; for AUC glucose/insulin SP-HF � 28, HP-LF n � 27; for AUC
ghrelin SP-HF � 24, HP-LF n � 21.

a Significant difference between men and women at wk 0, P � 0.05.
b Effect of time from wk 0 to wk 16, P � 0.05.
c Effect of time�gender from wk 0 to wk 16, P � 0.05.
d Significant difference between diets at wk 0, P � 0.05.

TABLE 1. Subject characteristics at baseline

SP-HF diet HP-LF diet

Male
(n � 13)

Female
(n � 17)

Male
(n � 12)

Female
(n � 15)

Age (yr) 49.9 � 11.4 48.0 � 11.0 50.3 � 0.8 53.3 � 8.2
Weight (kg)a 111.6 � 13.6 90.0 � 10.1 100.3 � 10.4 90.5 � 11.0
BMI (kg/m2) 34.8 � 3.7 34.4 � 3.5 32.2 � 3.2 34.4 � 3.3
Glucose

(mg/dl)b
112.3 � 43.6 94.0 � 11.8 101.4 � 13.1 94.7 � 6.4

Insulin
(mU/liter)

12.2 � 7.5 12.2 � 6.4 12.4 � 6.1 14.0 � 7.6

HOMA 3.4 � 2.4 2.9 � 1.6 3.1 � 1.5 3.3 � 1.7

Data are expressed as means � SD. Measurements were made at
the wk-0 visit and were assessed using two-way ANOVA with diet and
gender as the fixed factors. For conversion from mg/dl to mmol/liter
for glucose, multiply by 0.056. For conversion from mU/liter to pmol/
liter for insulin, multiply by 6.95. For insulin/glucose/HOMA results:
SP-HF (male n � 13, female n � 16); HP-LF (male n � 12, female �
15).

a Men were significantly different from women, P � 0.001.
b Men were significantly different from women, P � 0.048.
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effects on changes in postprandial ghrelin. Females had a
higher fasting ghrelin at wk 0 and 16 (P � 0.013 and P � 0.024
for effect of gender) than males, but this effect was not sig-
nificant when adjusted for baseline weight.

Energy expenditure and visual analog scores

In summary, from wk 0–16 postprandial RQ increased by
1.8% (P � 0.007), and there was a trend for REE to be reduced
(4.0 � 1.6%; P � 0.055), but neither was affected by diet
composition. There was a time by diet effect (P � 0.015) for

the TEF, such that it decreased by 3.6 � 0.7% for the SP-HF
diet compared with 0.32 � 1% for the HP-LF diet (Table 3).
There was a significant overall reduction in the 3 h hunger
response (P � 0.018; Fig. 1A) and a significant increase in the
fasting hunger scores (48.1 � 4.2 vs. 35.7 � 4.1 mm; P � 0.026)
with no diet or diet by gender interaction. There was no diet
or diet by gender effect on the desire to eat responses to the
test meal; however, subjects wanted less to eat after the
HP-LF compared with the SP-HF test meal at both wk 0 and
16 (overall diet effect, P � 0.02; Fig. 2C). For additional details
on energy expenditure and visual analog score data, see the
report by Luscombe-Marsh et al. (21).

Correlations and multiple regression analysis

Fasting ghrelin was correlated with weight and lean mass
at both wk 0 (r � �0.357; P � 0.014 and r � �0.427; P � 0.003,
respectively) and wk 16 (r � �0.312; P � 0.033 and r �
�0.355; P � 0.014, respectively). The change in fasting
ghrelin was correlated with the change in HOMA and AUC
hunger (r � �0.311; P � 0.033 and r � 0.346; P � 0.022,
respectively). Ghrelin AUC was correlated with lean mass at
wk 0 (r � �0.309; P � 0.039). The change in ghrelin AUC was
correlated with the change in HOMA (r � �0.319; P � 0.033).
These relationships remained significant after adjustment for
baseline weight.

The best predictor of fasting ghrelin was lean mass (r2 �
0.182; P � 0.003). At wk 0, 25% of the variation in fasting
ghrelin was explained by lean mass and fasting insulin. The
best predictor of changes in fasting ghrelin with weight loss
was a change in HOMA (r2 � 0.097; P � 0.033). The best
predictor of ghrelin AUC was lean mass (r2 � 0.096; P �
0.039). The decrease in ghrelin AUC was primarily predicted

FIG. 1. Mean (�SEM) plasma glucose (A), insulin (B), and ghrelin (C)
concentrations at baseline and 30, 60, 120, and 180 min after the
ingestion of an SP-HF (f; n � 28 for glucose and insulin; n � 24 for
ghrelin) or HP-LF (Œ; n � 26 for glucose and insulin; n � 21 for
ghrelin) test meal at wk 0 (solid line) and wk 16 (dashed line). Week
0 and 16 data were compared by repeated measures ANOVA, with
week and blood sampling time as within-subject factors, and diet and
gender as between-subject factors. For conversion from milligrams
per deciliter to millimoles per liter for glucose, multiply by 0.056. For
conversion from milliunits per liter to picomoles per liter for insulin,
multiply by 6.95. For conversion from picograms per milliliter to
picomoles per liter for ghrelin, multiply by 0.296. *, Significant effect
of time from wk 0 to wk 16, P � 0.01.

TABLE 3. Energy expenditure and respiratory quotient at wk 0
and 16 for subjects in the SP-HF and HP-LF groups

SP-HF diet
(n � 16)

HP-LF diet
(n � 14)

Combined
(n � 30)

REE (kJ/d)a

Week
0 8,961 � 384 8,117 � 298 8,567 � 256
16 8,612 � 390 7,775 � 362 8,221 � 274

TEF (%EI)b,c

Week
0 7.9 � 0.56 7.2 � 0.57 7.6 � 0.40
16 4.3 � 0.72 6.9 � 0.95 5.5 � 0.62

RQd

Week
0 0.81 � 0.013 0.82 � 0.01 0.81 � 0.00
16 0.80 � 0.01 0.82 � 0.009 0.81 � 0.00

Av postprandial RQb

Week
0 0.82 � 0.006 0.82 � 0.007 0.007 � 0.007
16 0.83 � 0.006 0.84 � 0.006 0.018 � 0.008

Data are expressed as mean � SEM. TEF, Thermic response to a
2586 kJ SP, or 2636 kJ HP test meal expressed as the % increase per
energy intake (EI) over 3 h; RQ, ratio of VCO2/VO2; postprandial RQ,
average RQ over 3 h after the SP or HP test meal. Data from wk 0 and
16 data compared using repeated-measures ANOVA with time as the
within-subject factor and diet and gender as between-subject factors.

a Effect of time from wk 0 to 16, P � 0.055.
b Effect of time from wk 0 to 16, P � 0.02.
c Significant time-by-diet interaction, P � 0.02.
d Significant time-by-diet-by-gender interaction, P � 0.02.
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by the increase in fasting ghrelin (r2 � 0.523; P � 0.001). The
change in hunger AUC after weight loss was significantly
predicted by the change in fasting ghrelin (r2 � 0.117; P �
0.027) and the change in fasting and ghrelin AUC (r2 � 0.246;
P � 0.004). There was no relationship between any measures
of fasting or postprandial energy expenditure and fasting
and postprandial ghrelin.

Discussion

Subjects wanted less to eat after a HP-LF compared with
a SP-HF carbohydrate-equivalent test meal at wk 0 and 16,
and there was an increased thermic effect after eating HP-LF
compared with SP-HF test meals (21). These results are con-

sistent with our previous findings (9, 10). There was no effect
of altering the protein to fat ratio on fasting or postprandial
ghrelin before or after weight loss, even though weight loss
improved postprandial ghrelin regulation in association
with improvements in postprandial hunger.

Despite our finding that the HP-LF test meals were more
satiating than the SP-HF test meals, we observed no effect of
isocaloric substitution of protein for fat on fasting or post-
prandial ghrelin. Previous findings examining the effect of
varying dietary composition on ghrelin secretion are con-
tradictory. Maximal suppression of postprandial ghrelin was
reported for high carbohydrate compared with high fat iso-
caloric weight-maintaining diets (19) and meals (18). How-
ever, increases in postprandial ghrelin with high protein
loads have been observed in a number of studies (15, 24). This
would predict that appetite would be increased with dietary
protein, whereas in reality the reverse occurs. In these stud-
ies, however, the energy content of the preloads were dif-
ferent for the test meals, separately shown to be related to the
degree of postprandial ghrelin suppression (25). Addition-
ally, our failure to observe a difference in postprandial gh-
relin with varying macronutrient loads might be due to the
preloads having similar effects on insulin and glucose re-
sponses. Changes in postprandial ghrelin with high carbo-
hydrate preloads were significantly correlated with changes
in postprandial insulin (26), suggesting a potential role of
insulin in regulating postprandial ghrelin responses. How-
ever, other work has reported no relationship between post-
prandial ghrelin, insulin, and glucose (18). Furthermore, iv
infusions of glucose have been found to either have no effect
(27) or decrease postprandial ghrelin (28).

Consistent with the observations of other investigators (19,
29), we observed a postprandial decrease in plasma ghrelin
levels in obese subjects, which was amplified after weight
loss. The postprandial nadir occurred earlier at wk 16 com-
pared with wk 0 (i.e. 60 min compared with 120 min), con-
sistent with the timing of the postprandial decrease in lean
individuals (30 min to 1 h) (14, 30). This confirms reports of
improvements in postprandial ghrelin regulation with
weight loss (16) and suggests that weight loss restores some
measure of the normal regulatory role of ghrelin on hunger
and meal initiation. It is unclear whether a particular amount
of weight loss is required, because improvements in post-
prandial ghrelin have been reported after weight losses vary-
ing from 7.1–17.3 kg over 4–6 months (16, 29). Conversely,
no improvement in postprandial ghrelin was observed with
a weight loss of 3.8 kg over 3 months (19).

The increase in fasting hunger and decrease in postpran-
dial hunger after weight loss were related to the change in
fasting and postprandial ghrelin, as observed previously
(16). The postprandial ghrelin improvements suggest a pos-
itive restoration of appetite control with weight loss. Previ-
ously, it has been proposed that the metabolic changes as-
sociated with weight loss contribute to weight regain
through increasing hunger and decreasing satiety. There are,
however, conflicting data on the effect of weight loss on
fasting and postprandial appetite (31). It remains unclear
how the observed changes in fasting or postprandial ghrelin
levels reflect changes to long-term appetite regulation and
thus maintenance of weight loss.

FIG. 2. Mean (�SEM) subjective VAS ratings for hunger (A), desire to
eat (B), and the amount of food desired (C) at baseline and 30, 60, 120,
and 180 min after the ingestion of an SP-HF (f; n � 27 for VAS) or
HP-LF (Œ; n � 23 for VAS) test meal at wk 0 (solid line) and 16 (dashed
line). Week 0 and 16 data were compared by repeated measures
ANOVA, with week and appetite rating time as within-subject fac-
tors, and diet and gender as between-subject factors. *, Significant
effect of time from wk 0 to wk 16, P � 0.01. †, Significant overall effect
of diet at both wk 0 and wk 16, P � 0.02.
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As previously shown (29), we observed an increase in
fasting ghrelin with weight loss. Ghrelin may not be as crit-
ical in the control of acute feeding behavior as initially
thought and may play a more important role in chronic
energy balance. In support of this, an increase in circulating
ghrelin was observed after aerobic exercise-induced weight
loss without compensatory decreases in food intake (32).
Markers of energy balance include markers of the size of
adipose tissue stores, such as circulating adipocyte-derived
factors or hormones such as leptin or insulin. We have con-
firmed findings that ghrelin correlates negatively with body
mass (33). We also found that lean mass predicted fasting
ghrelin levels and observed a negative relationship between
ghrelin and lean body mass that has not previously been
reported (34). Ghrelin is commonly associated with body fat
(33), although ghrelin and the GH secretagogue receptor
mRNA (type 1b) have been located in muscle in similar
quantities as in adipose tissue (35). Ghrelin administration
increases lean body mass in humans (36), and GH stimulates
skeletal muscle protein synthesis (37). Our observed associ-
ation may be reflective of a separate function of ghrelin on
energy homeostasis, potentially related to its effects on stim-
ulation of GH secretion.

The change in ghrelin was negatively correlated with and
related to the change in surrogate markers of insulin sensi-
tivity. This remained significant after adjustment for weight
loss, suggesting a role of insulin in long-term regulation of
ghrelin. Fasting ghrelin has previously been found to cor-
relate negatively with fasting insulin (28, 33), and obese
subjects who are insulin sensitive have higher fasting ghrelin
than obese insulin-resistant subjects (38). Moreover, insulin
resistance was reported to be a significant predictor of gh-
relin concentrations independently of BMI (38). Obese and
insulin-resistant populations, such as subjects with type 2
diabetes mellitus (39), Pima Indians (33), and polycystic
ovary syndrome patients (16), all displayed reduced fasting
ghrelin levels or blunted improvements in fasting or post-
prandial ghrelin after weight loss. However, in contrast with
the suggestion that insulin is involved in long-term ghrelin
homeostasis were findings that insulin infusions suppress
(40) or have no effect (27) on ghrelin. Insulin may therefore
directly or indirectly mediate the relationship between
ghrelin and body weight. Alternatively, it may be both a
marker of adipose tissue stores and a separate regulatory
factor involved in ghrelin homeostasis.

The effects of ghrelin on energy homeostasis may be me-
diated by changes in energy expenditure in addition to the
observed feeding effects. Conversion of total food intake to
body weight was more efficient in ghrelin-treated rats com-
pared with controls, suggesting reduced energy expenditure
with ghrelin administration (41). In rodents, ghrelin admin-
istration increased RQ (42) and reduced REE (20), which may
favor fat deposition, weight gain, and the development of
adiposity. Conversely, after ghrelin administration in rats
(42) and humans (12), no changes in total energy expenditure
(42), REE, TEF, or RQ (12) were observed. We observed no
relationship between any measure of total fasting or post-
prandial ghrelin, energy expenditure, or RQ either before or
after weight loss (21). Total ghrelin was inversely related to
REE and TEF in lean individuals (43), suggesting reduced

energy expenditure in negative energy balance states such as
during weight loss or fasting. However, Marzullo et al. (13)
reported reduced active ghrelin levels in obese subjects with
potentially impaired energy expenditure (shown by a lower
REE than would be estimated from predictive equations).
This decrease in energy expenditure could be an inappro-
priate response to the reduced ghrelin levels. The effects of
ghrelin on energy expenditure may be differentially regu-
lated in obesity, less pronounced in humans, or mediated by
active ghrelin levels.

We assessed total ghrelin, which may not be the optimal
measure for examining its role in acute and long-term energy
homeostasis, because total and active (Ser3 octanolyated)
ghrelin are correlated in lean, but not obese, humans (13). The
regulation of satiety is additionally modulated by a variety
of other factors, including gastrointestinal hormones such as
cholecystokinin, peptide YY, glucagon-like peptide 1, glu-
cose-dependent inhibitory polypeptide, oxyntomodulin,
peptide PP, and pancreatic polypeptide (11), some of which
have been reported to be differentially regulated by macro-
nutrient composition (44), although the literature is unclear
(45). We did not measure these hormones; however, assess-
ment of the relationship among these factors would further
elucidate the relationship between dietary macronutrients
and appetite.

We have confirmed the effects of obesity and weight loss
on fasting and postprandial ghrelin levels in hyperinsuline-
mic individuals. Reductions in postprandial hunger after
weight loss were predicted by improvement in fasting and
postprandial ghrelin, but this accounted for only a propor-
tion of the decrease in hunger. Decreases in surrogate mark-
ers of insulin resistance were associated with improvements
in ghrelin, suggesting a regulatory role of insulin in ghrelin
homeostasis. Despite a reduction in the desire to eat after an
HP-LF test meal, there was no effect of macronutrient com-
position on changes in postprandial ghrelin before or after
weight loss, and we therefore conclude that the satiating
effect of dietary protein is probably mediated by factors other
than ghrelin.
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